Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1036973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438093

RESUMO

Rhizobium spp. is a well-known microbial plant biostimulant in non-legume crops, but little is known about the mechanisms by which rhizobia enhance crop productivity under drought stress. This work analyzed the mechanisms involved in drought stress alleviation exerted by Rhizobium leguminosarum strains in wheat plants under water shortage conditions. Two (LBM1210 and LET4910) of the four R. leguminosarum strains significantly improved the growth parameters (fresh and dry aerial weight, FW and DW, respectively), chlorophyll content, and relative water content (RWC) compared to a non-inoculated control under water stress, providing values similar to or even higher for FW (+4%) and RWC (+2.3%) than the non-inoculated and non-stressed control. Some other biochemical parameters and gene expression explain the observed drought stress alleviation, namely the reduction of MDA, H2O2 (stronger when inoculating with LET4910), and ABA content (stronger when inoculating with LBM1210). In agreement with these results, inoculation with LET4910 downregulated DREB2 and CAT1 genes in plants under water deficiency and upregulated the CYP707A1 gene, while inoculation with LBM1210 strongly upregulated the CYP707A1 gene, which encodes an ABA catabolic enzyme. Conversely, from our results, ethylene metabolism did not seem to be involved in the alleviation of drought stress exerted by the two strains, as the expression of the CTR1 gene was very similar in all treatments and controls. The obtained results regarding the effect of the analyzed strains in alleviating drought stress are very relevant in the present situation of climate change, which negatively influences agricultural production.

2.
Plant Cell ; 32(12): 3902-3920, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037147

RESUMO

Hydrogen sulfide is a signaling molecule that regulates essential processes in plants, such as autophagy. In Arabidopsis (Arabidopsis thaliana), hydrogen sulfide negatively regulates autophagy independently of reactive oxygen species via an unknown mechanism. Comparative and quantitative proteomic analysis was used to detect abscisic acid-triggered persulfidation that reveals a main role in the control of autophagy mediated by the autophagy-related (ATG) Cys protease AtATG4a. This protease undergoes specific persulfidation of Cys170 that is a part of the characteristic catalytic Cys-His-Asp triad of Cys proteases. Regulation of the ATG4 activity by persulfidation was tested in a heterologous assay using the Chlamydomonas reinhardtii CrATG8 protein as a substrate. Sulfide significantly and reversibly inactivates AtATG4a. The biological significance of the reversible inhibition of the ATG4 by sulfide is supported by the results obtained in Arabidopsis leaves under basal and autophagy-activating conditions. A significant increase in the overall ATG4 proteolytic activity in Arabidopsis was detected under nitrogen starvation and osmotic stress and can be inhibited by sulfide. Therefore, the data strongly suggest that the negative regulation of autophagy by sulfide is mediated by specific persulfidation of the ATG4 protease.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Proteases/metabolismo , Proteômica , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Autofagia , Proteínas Relacionadas à Autofagia/genética , Cisteína Proteases/genética , Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sulfetos/metabolismo
3.
Plant Cell Environ ; 42(9): 2696-2714, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31152467

RESUMO

Cadmium treatment induces transient peroxisome proliferation in Arabidopsis leaves. To determine whether this process is regulated by pexophagy and to identify the mechanisms involved, we analysed time course-dependent changes in ATG8, an autophagy marker, and the accumulation of peroxisomal marker PEX14a. After 3 hr of Cd exposure, the transcript levels of ATG8h, ATG8c, a, and i were slightly up-regulated and then returned to normal. ATG8 protein levels also increased after 3 hr of Cd treatment, although an opposite pattern was observed in PEX14. Arabidopsis lines expressing GFP-ATG8a and CFP-SKL enabled us to demonstrate the presence of pexophagic processes in leaves. The Cd-dependent induction of pexophagy was demonstrated by the accumulation of peroxisomes in autophagy gene (ATG)-related Arabidopsis knockout mutants atg5 and atg7. We show that ATG8a colocalizes with catalase and NBR1 in the electron-dense peroxisomal core, thus suggesting that NBR1 may be an autophagic receptor for peroxisomes, with catalase being possibly involved in targeting pexophagy. Protein carbonylation and peroxisomal redox state suggest that protein oxidation may trigger pexophagy. Cathepsine B, legumain, and caspase 6 may also be involved in the regulation of pexophagy. Our results suggest that pexophagy could be an important step in rapid cell responses to cadmium.


Assuntos
Arabidopsis/metabolismo , Cádmio/metabolismo , Macroautofagia , Peroxissomos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Estresse Oxidativo , Proteólise
4.
J Exp Bot ; 70(16): 4251-4265, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31087094

RESUMO

Two cysteine metabolism-related molecules, hydrogen sulfide and hydrogen cyanide, which are considered toxic, have now been considered as signaling molecules. Hydrogen sulfide is produced in chloroplasts through the activity of sulfite reductase and in the cytosol and mitochondria by the action of sulfide-generating enzymes, and regulates/affects essential plant processes such as plant adaptation, development, photosynthesis, autophagy, and stomatal movement, where interplay with other signaling molecules occurs. The mechanism of action of sulfide, which modifies protein cysteine thiols to form persulfides, is related to its chemical features. This post-translational modification, called persulfidation, could play a protective role for thiols against oxidative damage. Hydrogen cyanide is produced during the biosynthesis of ethylene and camalexin in non-cyanogenic plants, and is detoxified by the action of sulfur-related enzymes. Cyanide functions include the breaking of seed dormancy, modifying the plant responses to biotic stress, and inhibition of root hair elongation. The mode of action of cyanide is under investigation, although it has recently been demonstrated to perform post-translational modification of protein cysteine thiols to form thiocyanate, a process called S-cyanylation. Therefore, the signaling roles of sulfide and most probably of cyanide are performed through the modification of specific cysteine residues, altering protein functions.


Assuntos
Arabidopsis/metabolismo , Cianetos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais
5.
Plant Physiol ; 171(2): 1378-91, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208225

RESUMO

Accumulating experimental evidence in mammalian, and recently plant, systems has led to a change in our understanding of the role played by hydrogen sulfide in life processes. In plants, hydrogen sulfide mitigates stress and regulates important plant processes such as photosynthesis, stomatal movement, and autophagy, although the underlying mechanism is not well known. In this study, we provide new experimental evidence that, together with our previous findings, demonstrates the role of hydrogen sulfide in regulating autophagy. We used green fluorescent protein fluorescence associated with autophagic bodies and immunoblot analysis of the ATG8 protein to show that sulfide (and no other molecules such as sulfur-containing molecules or ammonium) was able to inhibit the autophagy induced in Arabidopsis (Arabidopsis thaliana) roots under nitrogen deprivation. Our results showed that sulfide was unable to scavenge reactive oxygen species generated by nitrogen limitation, in contrast to well-established reducers. In addition, reducers were unable to inhibit the accumulation of autophagic bodies and ATG8 protein forms to the same extent as sulfide. Therefore, we conclude that sulfide represses autophagy via a mechanism that is independent of redox conditions.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Autofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/farmacologia , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Peróxido de Hidrogênio/metabolismo , Immunoblotting , Nitrogênio/metabolismo , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Superóxidos/metabolismo
6.
Amino Acids ; 47(10): 2155-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24990521

RESUMO

Cysteine (Cys) is the first organic compound containing reduced sulfur that is synthesized in the last stage of plant photosynthetic assimilation of sulfate. It is a very important metabolite not only because it is crucial for the structure, function and regulation of proteins but also because it is the precursor molecule of an enormous number of sulfur-containing metabolites essential for plant health and development. The biosynthesis of Cys is accomplished by the sequential reaction of serine acetyltransferase (SAT) and O-acetylserine(thiol)synthase (OASTL). In Arabidopsis thaliana, the analysis of specific mutants of members of the SAT and OASTL families has demonstrated that the cytosol is the compartment where the bulk of Cys synthesis takes place and that the cytosolic OASTL enzyme OAS-A1 is the responsible enzyme. Another member of the OASTL family is DES1, a novel L-cysteine desulfhydrase that catalyzes the desulfuration of Cys to produce sulfide, thus acting in a manner opposite to that of OAS-A1. Detailed studies of the oas-a1 and des1 null mutants have revealed the involvement of the DES1 and OAS-A1 proteins in coordinate regulation of Cys homeostasis and the generation of sulfide in the cytosol for signaling purposes. Thus, the levels of Cys in the cytosol strongly affect plant responses to both abiotic and biotic stress conditions, while sulfide specifically generated from the degradation of Cys negatively regulates autophagy induced in different situations. In conclusion, modulation of the levels of Cys and sulfide is likely critical for plant performance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cisteína/metabolismo , Citosol/metabolismo , Transdução de Sinais , Sulfetos/metabolismo , Homeostase
7.
Front Plant Sci ; 5: 683, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538717

RESUMO

Hydrogen sulfide is an important signaling molecule that functions as a physiological gasotransmitter of comparable importance to NO and CO in mammalian systems. In plants, numerous studies have shown that sulfide increases tolerance/resistance to stress conditions and regulates essential processes. The endogenous production of hydrogen sulfide in the cytosol of Arabidopsis thaliana occurs by the enzymatic desulfuration of L-cysteine, which is catalyzed by the L-cysteine desulfhydrase enzyme DES1. To define the functional role of DES1 and the role that the sulfide molecule may play in the regulation of physiological processes in plants, we studied the localization of the expression of this gene at the tissue level. Transcriptional data reveal that DES1 is expressed at all developmental stages and is more abundant at the seedling stage and in mature plants. At the tissue level, we analyzed the expression of a GFP reporter gene fused to promoter of DES1. The GFP fluorescent signal was detected in the cytosol of both epidermal and mesophyll cells, including the guard cells. GFP fluorescence was highly abundant around the hydathode pores and inside the trichomes. In mature plants, fluorescence was detected in floral tissues; a strong GFP signal was detected in sepals, petals, and pistils. When siliques were examined, the highest GFP fluorescence was observed at the bases of the siliques and the seeds. The location of GFP expression, together with the identification of regulatory elements within the DES1 promoter, suggests that DES1 is hormonally regulated. An increase in DES1 expression in response to ABA was recently demonstrated; in the present work, we observe that in vitro auxin treatment significantly repressed the expression of DES1.

8.
Mol Plant ; 7(2): 264-76, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24285094

RESUMO

Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its derivative molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine is synthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent years, significant progress has been made in Arabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the discovery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is essential for root hair development and plant responses to pathogens.


Assuntos
Arabidopsis/metabolismo , Cisteína/metabolismo , Transdução de Sinais , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...